Home

Vak Pozvat Naše znse band gap Nabídka překročení Deset let

Croissance catalysée de nanofils de ZnSe avec boîtes quantiques de CdSe
Croissance catalysée de nanofils de ZnSe avec boîtes quantiques de CdSe

The plots of (αhυ) 2 vs. hυ and band gap values of ZnSe thin films. |  Download Scientific Diagram
The plots of (αhυ) 2 vs. hυ and band gap values of ZnSe thin films. | Download Scientific Diagram

A Study by Ab-Initio Calculation of Structural and Electronic Properties of  Semiconductor Nanostructures Based on ZnSe
A Study by Ab-Initio Calculation of Structural and Electronic Properties of Semiconductor Nanostructures Based on ZnSe

Applied Sciences | Free Full-Text | Formation of a Colloidal CdSe and ZnSe  Quantum Dots via a Gamma Radiolytic Technique
Applied Sciences | Free Full-Text | Formation of a Colloidal CdSe and ZnSe Quantum Dots via a Gamma Radiolytic Technique

Band gap of ZnSe nanocrystals deposited at temperature 318K at... |  Download Scientific Diagram
Band gap of ZnSe nanocrystals deposited at temperature 318K at... | Download Scientific Diagram

Pritzker School of Molecular Engineering | The University of Chicago
Pritzker School of Molecular Engineering | The University of Chicago

A theoretical study on the B3 phases of ZnSe: Structural and electronic  properties
A theoretical study on the B3 phases of ZnSe: Structural and electronic properties

Controllable growth of ZnO–ZnSe heterostructures for visible-light  photocatalysis - CrystEngComm (RSC Publishing) DOI:10.1039/C3CE42068J
Controllable growth of ZnO–ZnSe heterostructures for visible-light photocatalysis - CrystEngComm (RSC Publishing) DOI:10.1039/C3CE42068J

Pushing the Band Gap Envelope of Quasi-Type II Heterostructured  Nanocrystals to Blue: ZnSe/ZnSe1-XTeX/ZnSe Spherical Quantum Wells | Energy  Material Advances
Pushing the Band Gap Envelope of Quasi-Type II Heterostructured Nanocrystals to Blue: ZnSe/ZnSe1-XTeX/ZnSe Spherical Quantum Wells | Energy Material Advances

Band Gap Reduction in ZnO and ZnS by Creating Layered ZnO/ZnS  Heterostructures | The Journal of Physical Chemistry Letters
Band Gap Reduction in ZnO and ZnS by Creating Layered ZnO/ZnS Heterostructures | The Journal of Physical Chemistry Letters

Simulation Evidence of Hexagonal‐to‐Tetragonal ZnSe Structure Transition: A  Monolayer Material with a Wide‐Range Tunable Direct Bandgap - Li - 2015 -  Advanced Science - Wiley Online Library
Simulation Evidence of Hexagonal‐to‐Tetragonal ZnSe Structure Transition: A Monolayer Material with a Wide‐Range Tunable Direct Bandgap - Li - 2015 - Advanced Science - Wiley Online Library

Estimated band-gaps, band offsets, and hole energy levels of the (a)... |  Download Scientific Diagram
Estimated band-gaps, band offsets, and hole energy levels of the (a)... | Download Scientific Diagram

Energy band gap determination of ZnSe nanoparticles. The UV-visible... |  Download Scientific Diagram
Energy band gap determination of ZnSe nanoparticles. The UV-visible... | Download Scientific Diagram

Temperature Dependence of the Band-Gap Energy and Sub-Band-Gap Absorption  Tails in Strongly Quantized ZnSe Nanocrystals Deposited as Thin Films | The  Journal of Physical Chemistry C
Temperature Dependence of the Band-Gap Energy and Sub-Band-Gap Absorption Tails in Strongly Quantized ZnSe Nanocrystals Deposited as Thin Films | The Journal of Physical Chemistry C

Pushing the Band Gap Envelope of Quasi-Type II Heterostructured  Nanocrystals to Blue: ZnSe/ZnSe1-XTeX/ZnSe Spherical Quantum Wells | Energy  Material Advances
Pushing the Band Gap Envelope of Quasi-Type II Heterostructured Nanocrystals to Blue: ZnSe/ZnSe1-XTeX/ZnSe Spherical Quantum Wells | Energy Material Advances

Materials | Free Full-Text | Tunable Band Gap and Conductivity Type of ZnSe/Si  Core-Shell Nanowire Heterostructures
Materials | Free Full-Text | Tunable Band Gap and Conductivity Type of ZnSe/Si Core-Shell Nanowire Heterostructures

Band alignment and charge transfer predictions of ZnO/ZnX (X = S, Se or Te)  interfaces applied to solar cells: a PBE+U theoretic
Band alignment and charge transfer predictions of ZnO/ZnX (X = S, Se or Te) interfaces applied to solar cells: a PBE+U theoretic

The effect of Mn-doped ZnSe passivation layer on the performance of  CdS/CdSe quantum dot-sensitized solar cells
The effect of Mn-doped ZnSe passivation layer on the performance of CdS/CdSe quantum dot-sensitized solar cells

Thick-shell CdZnSe/ZnSe/ZnS quantum dots for bright white light-emitting  diodes - ScienceDirect
Thick-shell CdZnSe/ZnSe/ZnS quantum dots for bright white light-emitting diodes - ScienceDirect

Figure 3 from Moving past 2.0eV: Engineered ZnSe-GaAs alloys for  multijunction solar cells | Semantic Scholar
Figure 3 from Moving past 2.0eV: Engineered ZnSe-GaAs alloys for multijunction solar cells | Semantic Scholar

Pushing the Band Gap Envelope of Quasi-Type II Heterostructured  Nanocrystals to Blue: ZnSe/ZnSe1-XTeX/ZnSe Spherical Quantum Wells | Energy  Material Advances
Pushing the Band Gap Envelope of Quasi-Type II Heterostructured Nanocrystals to Blue: ZnSe/ZnSe1-XTeX/ZnSe Spherical Quantum Wells | Energy Material Advances

Electronic band structure of the ordered Zn0.5Cd0.5Se alloy calculated by  the semi-empirical tight-binding method considering second-nearest neighbor
Electronic band structure of the ordered Zn0.5Cd0.5Se alloy calculated by the semi-empirical tight-binding method considering second-nearest neighbor

Design of a quantum well based on a ZnCdSe/ZnTe type II heterostructure  confined type I within ZnSe barriers
Design of a quantum well based on a ZnCdSe/ZnTe type II heterostructure confined type I within ZnSe barriers

Table 1 from Band-gap engineering of CdS, CdSe and ZnSe first-principles  calculations | Semantic Scholar
Table 1 from Band-gap engineering of CdS, CdSe and ZnSe first-principles calculations | Semantic Scholar

ZnSe (zinc-blende)
ZnSe (zinc-blende)

Growth of crystalline WO3-ZnSe nanocomposites: an approach to optical,  electrochemical, and catalytic properties | Scientific Reports
Growth of crystalline WO3-ZnSe nanocomposites: an approach to optical, electrochemical, and catalytic properties | Scientific Reports

Band Gap Engineering of Zinc Selenide Thin Films Through Alloying with  Cadmium Telluride | ACS Applied Materials & Interfaces
Band Gap Engineering of Zinc Selenide Thin Films Through Alloying with Cadmium Telluride | ACS Applied Materials & Interfaces